

# MetaCell® CHO-310 Chemically Defined Medium

## **Product Description**

MetaCell® CHO-310 is a serum-free, chemically defined cell culture medium designed for high-density transient transfection of CHO cells. It supports both small-scale and large-scale transient chemical transfections of CHO cells and is compatible with a variety of commercial cationic transfection reagents. It is recommended to use it in conjunction with MetaCell® Titer Enhancer and MetaCell® CHO TransFeed. For transfection reagents, PolyPlus MetaCell® or PEI 40K are recommended.

MetaCell® CHO-310 contains 6mM glutamine derivative.

This product is intended for research or further manufacturing but not for human or therapeutic use.

| Product Name      | Cat No.    | Form   | Size   | Storage                           | Shelf Life   | Application               |
|-------------------|------------|--------|--------|-----------------------------------|--------------|---------------------------|
| MetaCell® CHO-310 | L1013-0500 | Liquid | 500mL  | 2-8°C,<br>protected<br>from light | 12<br>months | Efficient transient       |
|                   | L1013-1000 |        | 1000mL |                                   |              | transfection of CHO cells |

#### **Cell Culture Conditions**

Medium: : MetaCell® CHO-310 Application: Suspension cell culture Cell line: ExpiCHO-S 、CHO-K1

Recommended parameters for trials:

| Shake flask volume  | 125mL                                                                                                         | 250mL         | 500mL     | 1L        | 3L         | 5L          |  |
|---------------------|---------------------------------------------------------------------------------------------------------------|---------------|-----------|-----------|------------|-------------|--|
| Medium volume       | 30-35mL                                                                                                       | 60-70mL       | 120-140mL | 240-280mL | 600-1000mL | 1500-2000mL |  |
|                     | 125±5 rpm (amplitude19mm) 105±5 rpm                                                                           |               |           |           |            |             |  |
| Shaker speed        | 1                                                                                                             | 20± 5 rpm (am | 95±5 rpm  |           |            |             |  |
|                     |                                                                                                               | 95±5 rpm (am  | 80±5 rpm  |           |            |             |  |
| Types of flasks     | PETG or PC, breathable, without baffles                                                                       |               |           |           |            |             |  |
| Culture environment | 37 ± 0.5 °C, 8% CO₂, humidity ≥80%, Ensure proper gas exchange and minimize light exposure during cultivation |               |           |           |            |             |  |

## Media preparation instruction by weight (1kg of final net weight of liquid medium)

- 1. Add 880-920g of ultrapure water or injectable water (water temperature 20-30°C) into a clean container.
- 2. Weigh out 19.958-20.038g of the MetaCell® CHO-310 and slowly pour it into the container, stir for 5-10 minutes until completely dissolved (The final concentration of the medium should be 19.998 g/L).
- 3. Add 2.096-2.104g of sodium bicarbonate (labeled amount: 2.100g/L), and stir for 20-25 minutes until completely dissolved.



- 4. Adjust the pH to the desired range using 5mol/L sodium hydroxide solution or 5mol/L hydrochloric acid solution (the recommended range is 6.95-7.05).
- 5. Make up to a net weight of 998-1002g with water and stir for 5-10 minutes. If there is a significant change in pH, continue to adjust the pH to the range of 6.95-7.05 using 5mol/L sodium hydroxide solution or 5mol/L hydrochloric acid solution.
- 6. Sterilize immediately by membrane filtration (pore size: 0.22µm).
- 7. Once the product is filtered, use immediately or store at 2 to 8°C for up to 12 months. Protect from light.

### **Cell Recovery**

- 1. Cells transported on dry ice should be placed in a liquid nitrogen environment for 3-7 days before cell recovery.
- 2. Take 39mL of MetaCell® CHO-310 in advance and preheat it at 37 °C in a 125mL shake flask.
- 3. Remove a vial of frozen cells from the liquid nitrogen tank and thaw in a 37°C water bath (1-2 minute).
- 4. Transfer the cells to a centrifuge tube containing 9 mL of pre-heated MetaCell® CHO-310.
- 5. Centrifuge at 1000rpm for 4 minutes, discard the supernatant, resuspend the cells in pre-heated MetaCell<sup>®</sup> CHO-310, and transfer all to a 125mL shake flask to make a final volume of 30mL. After mixing well, take a sample to measure the cell density and viability. The cell density should be within the range of 0.3-0.4 x 10<sup>6</sup> cells/mL.
- 6. Passage the cells when the cell density is  $\geq 3.0 \times 10^6$  cells/mL and the viability is  $\geq 90\%$  after 3-4 days of culture. Note: If the cells have been revived for 2-3 generations and are showing normal growth with a viability of  $\geq 95\%$ , it is advisable to arrange for cryopreservation as soon as possible.

## **Cell Passaging**

- 1. Pre-heat the culture medium at 37°C for 20-30 minutes or at room temperature for 1 hour before using it for subculturing.
- 2. Aseptically transfer the seed culture into a shaking flask and add an appropriate amount of culture medium. Set the shaker parameters according to the culture condition. Passage the cells every 3-4 days using fresh medium.
- 3. The recommended seeding density is:

Passaging every 3 days: 0.3-0.5×10<sup>6</sup> cells/mL

Passaging every 4 days: 0.15-0.3×10<sup>6</sup> cells/mL

- 4. Passaging can be performed when the final cell density reaches  $4.0-6.0\times10^6$  cells/mL and the cell viability is  $\geq95\%$ .
- 5. To achieve the best experimental results, cells should passage at least three times.
- 6. Transfection experiments should only be conducted after the cells have reached a stable growth state or have been adapted for about two weeks in the selection medium.

#### **Cell Cryopreservation**

- 1. Prepare a sufficient number of cells in the early logarithmic growth phase with a cell viability >95% for cryopreservation.
- 2. The final cell concentration for cryopreservation should be controlled at  $10.0-15.0\times10^6$  cells/mL.



- 3. Cryopreservation solution: (90% MetaCell® CHO-310 + 10% DMSO), precool at 2-8°C for at least 30 minutes.
- 4. Take an appropriate amount of cell suspension, centrifuge at 1000rpm for 4 minutes, discard the supernatant, and resuspend the cells in the pre-cooled cryopreservation solution.
- 5. Divide the cell suspension into cryotubes according to the cryopreservation specifications.
- 6. Gradually cool the cells to -80°C for freezing (cooling rate of 1°C/min) using a controlled-rate freezer or manual control method.
- 7. After 24 hours, transfer the frozen cells to the vapor phase of a liquid nitrogen tank (storage temperature range: 200°C to -125°C) for storage.

## **Cell Adaptation**

In most cases, serum-free cultured CHO cells can be directly adapted to MetaCell® CHO-310. If direct replacement of the medium (direct adaptation) fails, it is recommended to use gradient replacement (indirect adaptation) to adapt CHO cells to MetaCell® CHO-310.

Note: CHO cells used for adaptation need to be in the early logarithmic growth phase, with a cell viability ≥95%.

## Direct Adaptation Method

For cells that can be directly adapted, when the cell viability is ≥95% and in the early logarithmic growth phase, try directly transferring from serum-free medium to MetaCell® CHO-310.

- 1. Inoculate CHO cells into fresh MetaCell® CHO-310 at a seeding density of 0.15-0.5×10<sup>6</sup> cells/mL (refer to the cell passaging steps).
- 2. After 3-4 days of culture, check the cell density and viability. At this time, the cell viability should be ≥95%. If the viability is low, replace the adapted cells or use the indirect adaptation method.
- 3. Continue passage 3-4 times. When the cell viability is ≥95%, it can be considered that the cells have been adapted.

## Indirect Adaptation Method

- 1. Mix the original medium and MetaCell® CHO-310 at a volume ratio of 75:25, and the cell seeding density should be  $0.15-0.5 \times 10^6$  cells/mL.
- 2. Cells should be passaged when the cell density reaches 4.0-6.0×10<sup>6</sup> cells/mL after culturing for 3-4 days.
  - (1) grow well and the viability is ≥90%, adjust the ratio of MetaCell® CHO-310 to the original medium to 50:50 during passaging.
  - (2) If the cells grow slowly, cells can be subjected to centrifugation and media exchange, with centrifugation conditions at 1000rpm for 4 minutes. The mixed medium at this point still consists of MetaCell® CHO-310 and the original medium at a ratio of 25:75.
- 3. Repeat step 2, gradually increasing the proportion of MetaCell® CHO-310 (75:25, then 90:10), until the cells are completely transferred to 100% MetaCell® CHO-310.
- 4. Continue culturing in 100% MetaCell® CHO-310 for 3-4 passages. When the cell density reaches 4.0-6.0×10<sup>6</sup> cells/mL within 3-4 days of seeding and the cell viability is ≥95%, adaptation is considered complete. If the cell growth remains stable, subsequent experiments can be conducted.



| Product Name                         | Classification | Form   | Cat No.    | Size   |
|--------------------------------------|----------------|--------|------------|--------|
| MetaCell® CHO-320                    | Basal Medium   | Liquid | L1015-0500 | 500mL  |
| MetaCeii CHO-320                     | Dasai Mediuiti |        | L1015-1000 | 1000mL |
| MetaCell® CHO TransFeed              | Feed           | Liquid | L1008-0500 | 500mL  |
| Metaceii Cho Transfeed               | reed           |        | L1008-1000 | 1000mL |
| MetaCell <sup>®</sup> Titer Enhancer | BioReagent     | Liquid | L1009-0010 | 10mL   |
| ivietaceii iiter Ennancer            |                |        | L1009-0100 | 100mL  |